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Abstract
We study the tunneling of chiral electrons in graphene through a region where the electronic
spectrum changes from the usual linear dispersion to a hyperbolic dispersion, due to the
presence of a gap. It is shown that, contrary to the tunneling through a potential barrier, the
transmission of electrons is, in this case, smaller than one for normal incidence. This
mechanism may be useful for designing electronic devices made of graphene.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A new and exciting field in condensed matter physics started
when graphene—a two-dimensional, one carbon-atom thick
material—was isolated for the first time [1, 2]. It was
experimentally shown that the charge carriers in graphene
could be controlled by a bottom gate set-up; the charge carrier
were shown to be either holes or electrons, depending on the
sign of the bottom gate voltage. In the transition from hole-
based to electron-based transport the conductivity shows a
minimum (not zero) value, σmin. Its experimental value is of
the order of σmin � 4e2/h [1–4], but the actual value seems
to be somewhat sample-dependent [5]. This value for σmin

imposes therefore a limitation on the minimum value of the
current a field effect transistor made of graphene can transport.
The existence of a conductivity minimum in graphene is a
consequence of the fact that the elementary excitations of
graphene are Dirac fermions, with a linear dispersion relation,
instead of the usual electrons with parabolic-like dispersion,
characteristic of ordinary semiconductors. Interestingly
enough, the calculated value of the conductivity of graphene at
the neutrality point is off the experimental value by the factor
1/π [6–8]. Although this value is the more common result
for the theoretical calculation of σ theo

min , there are, however,
several different values available in the literature [9]. It is also
interesting that a clean graphene sample with metallic leads
and smooth edges has a value of σ = σ theo

min as long as its width
(w) is much larger than its length (L), being smaller than σ theo

min
in the opposite limit [10]. Considering the case of metallic
armchair edges, it found that σ > σ theo

min for w/L � 1 and that
σ → σ theo

min for w/L � 1 [10]. This shows that disorder is not
needed for having σ � σ theo

min .

Another characteristic of Dirac electrons in graphene
is their ability to tunnel through a potential barrier with
probability one [11, 12]. This so-called Klein tunneling of
chiral particles has long ago been proposed in the framework
of quantum electrodynamics [13–15], but was never observed
experimentally. Graphene opens up a route to observe this
effect in a tabletop experiment, where the potential is created
by some electrostatic gate potential. The manifestation of
Klein tunneling is also present when electrons in graphene are
forced to transverse an n–p junction, leading to a selective
transmission of those electrons approaching the junction
perpendicularly [16]. Other unusual effects, such as the
focusing of an electric current by a single p–n junction, are
also characteristic of Dirac electrons in graphene [17].

As appealing as the Klein tunneling may sound from the
point of view of fundamental research, its presence in graphene
is unwanted when it comes to applications of graphene to
nanoelectronics. This comes about because the pinch-off of the
field effect transistor may be very ineffective. The same may
occur because of the minimum conductivity of graphene at the
neutrality point (as discussed above). One way to overcome
these difficulties is by generating a gap in the spectrum. From
the point of view of Dirac fermions this is equivalent to the
generation of a mass term. There are two known forms of
generating gaps in the spectrum of graphene. The first one is by
patterning graphene nanoribbons [18, 19]. The mechanism of
producing these gaps depends on the nature of the termination
of these nanoribbons. For armchair nanoribbons the gap
comes from quantum confinement of Dirac fermions induced
by the finite nature of the ribbons in the transverse direction.
For zigzag nanoribbons the gap stems from the formation
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of polarized spin edge states characteristic of these type of
ribbons. The formation of these polarized states is also possible
in bilayer graphene [20]. It is interesting to notice that
Klein tunneling can also be circumvented by using a graphene
bilayer [11]. The value of the induced gaps depends on the
width of the ribbons, but for large widths it is of the order of
0.1 eV.

Another possibility of generating gaps in the graphene
spectrum is to deposit graphene on top of hexagonal boron
nitride (BN) [21]. This material is a bandgap insulator with
a boron to nitrogen distance of the order of 1.45 Å [23] (in
graphene the carbon–carbon distance is 1.42 Å) and a gap
of the order of 4 eV. It was shown that, in the most stable
configuration, where a carbon is on top of a boron and the other
carbon in the unit cell is centered above a BN ring, the value of
the induced gap is of the order of 53 meV. Depositing graphene
on a metal surface with a BN buffer layer leads to n-doped
graphene with an energy gap of 0.5 eV [22].

The two mechanisms described above can be used to
produce arrangements of graphene where in some spatial zones
of the material the Dirac electrons will have gaps in the
spectrum. The first possibility is to pattern graphene planes
such that, in several areas of the graphene flake, narrow
nanoribbons may exist. Another possibility is to combine
wafers of silicon oxide and hexagonal boron nitride, such
that in the region where the BN is located the local spectrum
of graphene will present a finite gap. We shall explore in
this paper this latter possibility and the way it can prevent
Klein tunneling from occurring. The two mechanisms just
mentioned can then be at the heart of future nanoelectronics
built of graphene. The second method is also related to
junctions of graphene with other kinds of systems, being then
superconducting [24, 25], normal-conductor/graphene/normal-
conductor [26] or multiterminal junctions [27]. Also the study
of electron transport in disordered graphene samples is of
interest [28], especially because the tunneling may be assisted
by impurities [29], which is a manifestation of Klein tunneling.

For a review of the experimental aspects of graphene
physics see the work of Geim and Novoselov [30]. Some
of the theoretical aspects of graphene physics are reviewed
qualitatively by Castro Neto et al [31], Katsnelson [32] and
Geim and MacDonald [33]; a more comprehensive review
is given by Castro Neto et al [34]. For a review on Klein
tunneling see the work by Beenakker [35].

2. Basic definitions

As described in the previous section, we assume that it is
possible to manufacture slabs with SiO2–BN interfaces, on top
of which a graphene flake is deposited. This will induce spatial
regions where graphene has a vanishing gap intercalated with
regions where the BN will cause a finite gap.

In the following we will consider the graphene physics in
two different regions: the k-region, where the graphene sheet
is standing on top of SiO2, and a q-region, where a mass-
like term is present, caused by BN, inducing an energy gap of
value 2t ′ (for all numerical purposes we use t ′ = 0.1 eV). The
wavefunctions in these two regions will be referred to by ψk

Figure 1. Top figure: graphene band structure for the massless and
massive cases. In the latter, the quasi-parabolic bands have a gap
energy 2t ′. Bottom figure: geometry in the reflection in the k–q
interface. An incident wavefunction ψ+

k with wavevector k+ is
reflected and refracted into the ψ−

k and the ψ+
q wavefunctions with

wavevectors k− and q+, respectively. Since the momentum is
conserved at the interface, one has that qy = ky . The refracted wave
propagates with an angle φ, which is slightly larger than the incident
and reflected angles θ with |qx | < |kx |, a consequence of energy
conservation.

and ψq, respectively. The geometry of the scattering process is
represented in figure 1.

The Hamiltonian for massless Dirac electrons in graphene,
around the K-point in the Brillouin zone, is given by

Hg = vFσ · p, (1)

where σ = (σx , σy), p = −ih̄∇, σi , with i = x, y, z, is
the i Pauli matrix, and vF = 3ta/(2h̄), with t the nearest-
neighbor hopping matrix in graphene and a the carbon–carbon
distance. Therefore, in the massless wavefunction, in the k-
region (t ′ = 0), it is given by

ψk,s = 1√
2

(
1

u(k, s)

)
eik·r, (2)

with
u(k, s) = s eiθ , (3)

s = sign(E) and θ = arctan (ky/kx). The corresponding
energy eigenvalue is

E = ±vF h̄
√

k2
x + k2

y = ±h̄vF k, (4)

with k the absolute value of the wavevector.
In a region of finite mass the Hamiltonian for Dirac

electrons is
Hg = vFσ ·p + t ′σz, (5)

with mv2
F = t ′ the mass term (m is the effective mass); as

a consequence the electronic spectrum will present a finite
energy gap of value 2t ′. In the q-region (the gapped region,
t ′ �= 0), the wavefunction is

ψq,s = 1√
2

(
1

v(q, s) eiq·r

)
, (6)
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where

v(q, s) = E − t ′

h̄vF (qx − iqy)
. (7)

Due to momentum conservation, electrons propagating
through a k–q interface will conserve their wavevector
component parallel to the interface. Thus, taking this interface
to be located along the ŷ axis, we will have always ky = qy .
The q-region eigenenergy, associated with the eigenstate (6)
and the Hamiltonian (5), is

E = ±
√
(q2

x + k2
y)(h̄ vF )2 + t ′2. (8)

It is amusing to notice that the spectrum (8) has the
same form as for the electrons in a graphene bilayer,
when the two graphene planes are at different electrostatic
potentials [36, 37]. Using equations (8) and (4), we write

vF h̄qx =
√

E2 cos2 (θ)− t ′2 (9)

and, depending on E2 cos2 (θ) being larger or smaller than t ′2,
qx may take a real or a pure imaginary value. Wave propagation
follows for the former case, evanescent waves in the latter.

For a real qx , and since qy = ky , we have
√

E2 − t ′2 sin (φ) = |E | sin (θ) (10)

where φ is the angle of propagation of the electron in the q-
region (see figure 1). Equation (10) is just the usual Snell’s
law for electrons being refracted at the interface separating the
k- and q-regions. We see that φ � θ whenever |E | > t ′.

2.1. Forward and backward propagation

We consider now the simple reflection in the interface, with
the incident and the reflected waves both on the k- or on the
q-region.

In the k-region, the x̂ component of the wavevector
of the reflected wave is symmetrical with respect to the
incident wave. Thus, for this case, we have the following
transformations under a reflection (see also figure 1):

kx → −kx and eiθ → ei(π−θ) = −e−iθ . (11)

This leads to the generalization of equations (2) and (3):

u± = ±s e±iθ , (12)

ψ±
k = 1√

2

(
1

u±

)
e±ikx x+iky y . (13)

where the plus and minus signs refers to waves propagating,
respectively, in the positive and negative directions of the x̂
axis.

A similar reasoning leads to the generalization of (7) to
v(q, s):

v± = E − t ′

h̄vF (±qx − iky)
. (14)

and, also, of the q-region wavefunction to

ψ±
q = 1√

2

(
1
v±

)
e±iqx x+iky y . (15)

The differences we have just highlighted in the
wavefunctions and coefficients for forward and backward
propagating particles can be also seen in the differences in
positive and negative angles of incidence in the interface.
These changes are useful when a guiding-wave kind of device
is made. Let us therefore analyze the case when ky → −ky . If
in equation (11) we keep kx unaltered and ‘reflect’ instead ky

we would obtain

ky → −ky and eiθ → e−iθ , (16)

with similar relations for φ, the angle in the q-region. For this
case, we get

v±(−φ) = −v∓(φ ) and u±(−θ) = −u∓(θ).
(17)

Apart from a minus sign, these relations shows that the
operation of changing the sign of ky (i.e. the angle of
incidence) is equivalent to the one of changing the sign of
kx (qx in the q-region). Of course, the extra minus sign
on the right-hand side of both expressions in equation (17)
is of no consequence within the calculation of reflection and
transmission coefficients that follows.

2.2. Real and evanescent waves in the q-region

Since in the q-region there is a gap in the energy spectrum then
qx can take both real and pure imaginary values. In the first
case, we have wave propagation in this region, in the latter just
evanescent waves. No simple expression as the one given by
equation (12) can be written in this case. Instead, we need
to consider separately the cases where qx is a real or a pure
imaginary number.

2.2.1. For qx real. For real qx , we can write a similar
expression to the one in equation (12):

v± = ±ve±iφ, (18)

with φ given by equation (10) and

v = E − t ′

vF h̄|q| = E − t ′
√

E2 − t ′2 , (19)

where equation (8) was used.

2.2.2. For qx pure imaginary. Since ky is always a real
number, equation (14) implies that, if qx is a pure imaginary,
v± is also, and then

v± = ∓iν±, (20)

where

ν± = ± E − t ′

h̄vF (±ky − α)
, (21)

with the real absorption coefficient α defined as qx = iα, and
α given by

α = (vF h̄)−1
√

t ′2 − E2 cos(θ)2. (22)
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Figure 2. The four different possible cases for
reflection/transmission in an interface between k and q regions.

2.2.3. Complex conjugate of the u± and v± coefficients. For
the calculation of the intensity reflection and transmission
coefficient we will need to deal with the complex conjugate of
the u± and v± coefficients. The definition (12) for u± implies
that

u∗
± = −u∓. (23)

In the case of v±, its complex conjugate depends on the
fact of having a real or imaginary qx :

v∗
± =

{
−v∓ if qx is real

−v± if qx is imaginary.
(24)

3. Transmission and reflection at the interface: the
step case

3.1. Reflection and transmission amplitude coefficients

We compute now the reflection and transmission amplitude
coefficients for electrons crossing an interface between a k-
and a q-region. Unlike what happens in optics, and due to
the differences in back and forward propagation, we will need
to consider not only two but four different cases: electrons
crossing the interface coming from the k-region in the forward
and backward senses, and those crossing the interface coming
from the q-region, also propagating in the positive and negative
senses of the x axis. These four cases are summarized in
figure 2.

3.1.1. Propagation from a k- into a q-region. We start by
deriving the amplitude reflection and transmission coefficients,
which will be denoted as r±

kq and t±
kq , respectively, for the case

of the propagation from a k- into a q-region. This situation is
described in figure 1 and also in figure 2(a).

Since there is a partially reflected wave, the total
wavefunction in the k-region must be written as an
superposition of one associated with the incident electrons and
the other with those that are reflected:

	k(r) = Aψ+
k + B ψ−

k . (25)

A and B are the normalized amplitudes for the incident and
reflected wavefunctions. In the q-region, with C the amplitude
of the transmitted wavefunction, we have

	q(r) = C ψ+
q . (26)

Using equations (25) and (26), and imposing the continuity
condition of the particle’s wavefunction at the interface,
i.e. 	k(x, y = 0) = 	q(x, y = 0), we find

r+
kq = B

A
= v+ − u+

u− − v+
and

t+
kq = C

A
= 1 + r+

kq ,

(27)

where the superscript + recalls that the incident wavefunction
is, in this case, traveling in the positive direction of the x axis.

Had we considered the case where the particles travel in
the backward direction, represented by figure 2(c), we would
have obtained

r−
kq = v− − u−

u+ − v−
and t−

kq = 1 + r−
kq . (28)

This result can be obtained simply by exchanging the plus by
the minus signs in equation (27).

3.1.2. Propagation from the q- into the k-region. For
computing the reflection and transmission coefficients for the
cases where the electrons come from the q-region into the
k-region, r±

qk and t±
qk , we need only to exchange u ↔ v

in the corresponding backward and forward expressions (27)
and (28). The result is

r±
qk = u± − v±

v∓ − u±
and t±

qk = 1 + r±
qk . (29)

3.2. Amplitude coefficients: general algebraic relations.

It will be very useful in the following, for expression
simplification purposes, to derive the simple relations between
the reflection and transmission amplitude coefficients. Similar
relations to those we present here exist also for the photons’
optics case. For instance, we may write ±r12 + t12 = 1 when
a light beam is reflected and refracted in a diopter between
regions 1 and 2, with the plus or minus sign corresponding,
respectively, to the cases where n1, the index of refraction of
medium 1, is smaller or larger than the one of region 2.

Here, however, we have that in general r+
mn �= r−

mn (and
similarly for the transmission coefficients) and these relations
are less trivial (we have used the notation m �= n = {k, q}).

Using the definitions in equations (27)–(29), we can write

R + T = 1, (30)

where
R = r+

kqr−
kq = r+

qkr−
qk

T = t+
qk t+

kq = t−
qk t−

kq .
(31)

These relations are general and do not depend on the qx being
real or imaginary. Another general relation, useful to simplify
expressions of the transmission of multi-layered structures, is

r±
mnr∓

nm = −R × t∓
nm

t±
nm
. (32)

4
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3.3. Intensity reflection and transmission coefficients

The general definitions for the intensity reflection and
transmission coefficients are

R±
mn = r±

mn

(
r±

mn

)∗

T ±
mn = t±

mn

(
t±
mn

)∗ = 1 − R±
mn,

(33)

where we keep the same notation as before. We will consider
now, separately, the cases where qx is a real number or a pure
imaginary.

3.3.1. For qx real. For qx a real number, we note first that for
any m �= n = {k, q}

(
r±

mn

)∗ = r∓
mn

R = R∗.
(34)

These relations are just a consequence of the definitions of r±
mn

in equations (27)–(29) and in equations (23) and (24). Using
equation (34) in equation (33) results in

R = R and T = T for qx real,

which is valid, for both interfaces and both directions of
propagation. Furthermore, using equation (30) we get

R + T = 1,

an expected result.
Explicitly, the R coefficient defined in equation (31) is

given by

R = (v+v− − 1)− (u−v+ + u+v−)
(v+v− − 1)− (u−v− + u+v+)

.

Making use of equations (14) and (12), we may write

v+v− = −v2, u±v∓ = −s v e±i(θ−φ) and

u±v± = s v e±i(θ+φ),

where v is given by equation (7) and φ by equation (10). Using
these expressions we obtain

R = 1 + v2 − 2 s v cos (θ − φ)

1 + v2 + 2 s v cos (θ + φ)
,

where

v cos (θ ± φ) = vF h̄

E + t ′
(
qx cos (θ)∓ ky sin (θ)

)
.

Finally, after algebraic simplification, we obtain

R = R = kx − qx

kx + qx
. (35)

3.3.2. For qx pure imaginary. For qx a pure imaginary, we
see that (

r±
mn

)∗
r±

mn = 1

RR∗ = 1.
(36)

Using these relations along with equation (33), we
straightforwardly obtain

R±
kq = 1 and T ±

kq = 0

with qx a pure imaginary. (37)

This is an expected result since the transmission T = 1 − R
must be zero in the case where the wave in the k-region enters
in the gap of the q-region. If the incident wave propagates in
the gap region, i.e. it is an evanescent wave, the coefficients
R±

qk and T ±
qk are physically meaningless.

We see from the second expression in (36) that R is a
modulo 1 complex quantity. It may be written as

R = ei2ϕ, (38)

with 2ϕ a convenient definition of its argument. To compute
this angle, in the spirit of equation (22), we replace qx by iα in
equation (35) to obtain

R = kx − iα

kx + iα
.

Computing the real part of this quantity, we get

cos (2ϕ) = 2E2 cos(θ)2

t ′2 − 1

and, after straightforward manipulation,

cos (ϕ) t ′ = cos (θ) |E | or else tan (ϕ) = α

kx
, (39)

a Snell type expression for the qx pure imaginary case.
Since R = RR∗ = 1 for qx a pure imaginary, a

general expression for the intensity reflection and transmission
coefficients (valid for qx both real and pure imaginary) is given
by

R = 1 − T

=
∣∣∣∣kx − qx

kx + qx

∣∣∣∣
=

∣∣∣∣1 + v2 − 2s v cos (θ − φ)

1 + v2 + 2s v cos (θ + φ)

∣∣∣∣ . (40)

Naturally, equation (40) depends on t ′, since v, θ and φ depend
on this quantity. When one considers the case θ = φ =
t ′ = 0 one obtains R = 0. This expression is plotted in a
density/contour plot in figure 3.

4. The barrier

With the above definitions, the computation of transmission
and reflection coefficients for any type of multi-interface de-
vice follows similar expressions to those found in normal op-
tics1. To illustrate this, we consider in the following a het-
erostructure made of a q-region of widthw placed between two
semi-infinite slabs of k-regions, as shown in figure 4. Our goal
will be the derivation of the intensity transmission coefficient
for this case, which we will denote by Tb. We notice that results
for barriers of the same height when the spectrum of the elec-
trons is linear in every spatial region was considered in [38].

1 There is no analog, however, for the gap region with normal incidence.

5



J. Phys.: Condens. Matter 20 (2008) 325221 J Viana Gomes and N M R Peres

Figure 3. Intensity transmission for particles crossing the interface
from a k-region into a q-region. The black region corresponds to a
zero transmission, a case that corresponds to the total internal
reflection in the usual photonic optics.

Figure 4. Barrier: scheme for the computation of the transmission.

In figure 4, the wavefunction 	1 describes an electron,
traveling in the positive direction of the x̂ axis, just before
crossing the diopter q − k. This wavefunction can be
seen as resulting from the coherent superposition of two
wavefunctions, one being itself after a round trip in the q-
region, given by 	1 t+

qk t−
qk ei2qxw, and another one which is

the incident wavefunction 	0 after crossing the first interface
k − q , equal to	0 t+

kq eiqxw. Adding these two contribution and
solving in order to find 	1 we obtain

	1 = 	0

t+
kq eiqxw

1 − r+
qkr−

qk ei2qxw
.

If we denote the amplitude transmission coefficient for this
barrier as tB = 	2/	0 and using the fact that 	2 = t+

qk	1, we
finally obtain

tB = T eiqxw

1 − Rei2qxw
(41)

where the definitions (30) were used.

4.1. qx real: free propagation

If there is wave propagation in the q-region, qx is real, R = R
and T = T , and

TB = tB t∗
B = 1 − RB

=
[

1 +
(

2

π
F

)2

sin2 (qxw)

]−1

. (42)

Figure 5. Transmission of a barrier for a q-region width of w = 50a
(top) and w = 300a (bottom). For a sufficiently narrow width, the
wave tunnels across the q-region resulting in a non-null transmission.
In optics, this behavior is known as frustrated total internal
reflection. The dashed lines mark the region where, in the step, the
transmission is zero.

where we used the finesse definition

F = π

√
R

T
= π

2

t ′

qx
, (43)

to highlight the similarity with an Fabry–Pérot solid etalon
(made of glass, for example) in the usual optics [39]. However,
this similarity is elusive. In the solid etalon case, in
general, the finesse is almost a constant coefficient since the
interfaces’ reflectivities (e.g. in a glass–air diopter) has a small
dependence on the energy (optical resonances are typically far
from the visible part of the spectrum and there’s no gap as in the
case of the graphene with a mass term). In the case treated here,
F has a strong dependence on the energy E of the particles
and, furthermore, there is also a gap present. We will revisit a
Fabry–Pérot type of device later in this work.

4.2. Inside the gap: frustrated total internal reflection

Inside the gap, qx is pure imaginary and there’s no wave
propagation. This is similar to the total internal reflection in

6
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Figure 6. Transmission coefficient for a simple step and several
barriers for normal incidence. In the barrier case, there is a frustrated
total internal reflection and, in the gap, the transmission is non-zero
and increases with decreasing values of the width of the q-region.

optics, where only an evanescent wave exists that carries no
energy (since, in here, the coefficient Rkq = 1) and decays
exponentially in the x direction (although keeping the phase
term eiky y in the y direction).

However, by placing a k-region nearby the evanescent
wave, some of the energy of the totally reflected wave tunnels
throughout the gap region, a phenomena known in optics
as frustrated total internal reflection. This phenomena is
also described by equation (42), whenever qx becomes pure
imaginary. In this case, replacing qx = iα and using the
definitions (22) and (38) we may simplify equation (42) to

TB = tB t∗
B = 1 − RB = 1

1 + ζ
, (44)

where we have used the definition

ζ = sinh2 (αw)

sin2 (ϕ)
, (45)

which will be used in the following. Figure 5 shows the
transmission for two barriers of different widths. Figure 6

Figure 8. Schemes for the computation of the transfer matrices.

shows the transmission at normal incidence; clearly when the
energy is inside the gap the transmission is smaller than one
and there is no Klein paradox. If E = 0, equation (39)
implies that ϕ = −π/2 and α = t ′/vF h̄. TB is, in this case,
independent of θ and is equal to

TB(E = 0) = cosh−2

(
w

t ′

vF h̄

)
. (46)

This behavior is clearly shown in the left panel of figure 7.
In the right panel of figure 7 it is shown how this tunneling
transmittance at zero energy varies with the barrier width. A
50% reduction is accomplished for a barrier with a width of
approximately 36 a.

5. Transfer matrices

The method used in section 8 for computing tB, although being
simple, becomes very difficult to handle for more complex
heterostructures with more than two interfaces. These types
of cases are usually treated with the use of transfer matrices.
These will be computed in the following. Figure 8 shows the

Figure 7. Left: transmission coefficient for a barrier with a width 50a and for different angles of incidence θ . At E = 0, all curves have the
same value and, for θ = π/2, the transmission is a delta function at E = 0. Right: zero energy transmission coefficient of a barrier as a
function of its width w.
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scheme used to compute the transfer matrix in an interface k−q
and q − k. In both cases, our goal is to derive 	1 and 	 ′

1 from
the knowledge of 	0 and 	 ′

0. Defining

(
	1

	 ′
1

)
= Mmn

(
	0

	 ′
0

)
,

where Mmn is the transfer matrix for the generic m − n
interface, and using equation (31), we obtain the result

Mmn =
[

1
t+
nm

r−
nm

t−
nm

− r+
mn

t−
nm

1
t−
nm

]
. (47)

The determinant of this matrix is given by

Det(Mkq ) = [
Det(Mqk)

]−1 = t+
kq

t−
qk

. (48)

As expected, Det(Mkq × Mqk) = 1. The free propagation
of a particle in a k- and in a q-region of width ξ is given,
respectively, by

Lk(ξ) =
[

eikx ξ 0
0 e−ikx ξ

]
; Lq(ξ) =

[
eiqx ξ 0

0 e−iqx ξ

]
.

(49)

6. The diode

We consider now a more complex system composed by a
sandwich of two q-regions of width w separated by a slab of a
k-region with width d , inside two semi-infinite k-regions. The
geometry of the system is represented in figure 9. To derive the
amplitude transmission coefficient of such a structure we need
to compute the expression

td = Mqk Lq(w)Mkq Lk(d)Mqk Lq(w)Mkq .

The result of this expression can be simplified using
equation (32), resulting in

tD = T 2 e2iqxw

(R e2iqxw − 1)2 − R(e2iqxw − 1)2 e2ikx d
.

For the most important case where the q-regions are
barriers with energy higher than the energy of the particles,
we have a resonant diode. In this case and using the
definitions (22) and (38) we get

tD = t2
B ×

[
1 − sinh2 (αw)

sinh2 (αw + iϕ)
ei2kx d

]−1

, (50)

where tB is the amplitude transmission for a simple barrier,
given by equation (41).

We may simplify equation (50) by expanding the term
sinh (αw + iϕ) and expressing the result in a complex polar
representation. Doing this and using the definition for ζ in
equation (45) we obtain

sinh2 (αw)

sinh2 (αw + iϕ)
= ζ

1 + ζ
exp (i2ϕ̃)

with the phase term argument given by

ϕ̃ = − arctan [coth (αw) tan (ϕ)].

The intensity transmission coefficient can now be easily
computed, being equal to

TD = 1

1 + (
2
π
FD

)2
sin2 (ϕ̃ + kx d)

, (51)

where now the diode finesse FD is given by

FD = π
√
ζ(1 + ζ ). (52)

The transmission is represented in figure 10.

6.1. Revisiting the Fabry–Pérot: etalon made with ‘mirrors’

The expression (51) results in the simple case of a Fabry–Pérot
etalon if:

(i) αw � 1, which implies coth (αw) ∼= 1 and ϕ̃ ∼= ϕ;
(ii) E � t ′, which implies that ϕ ≈ π/2.

With these approximations we get

FD = π

2
sinh (2αw)

and then

TD = 1

1 + sinh2 (2αw) cos2 (kx d)
, (53)

an expression that can be derived from a delta function
potential treatment, treated in section 7.

6.2. The diode tunneling conductance

Let us now compute the tunneling conductance of the device
as a function of the potential bias V , the chemical potential
of the leads and the length w of the barrier. We shall assume
that the device is operating in the region where the chemical
potential of the leads lies inside the gap of the barrier. The
total tunneling current density (i.e. the current per unit of cross-
sectional length) through the device is given by

J (V , w) = − 2e

4π2vF h̄2

∫
dθ EdE cos θ T (E, θ)

× [ f (E − μL )− f (E − μR)] (54)

where f (x) = (1 + ex/(kB T ))−1, μL = μ + eV/2, μR =
μ − eV/2 and μ is the chemical potential of leads in the
equilibrium state. The linear response conductance per unit
of cross-sectional length is given, at zero temperature, by

G(μ,w) = e2

h̄

|μ|
3π2at

∫ π/2

−π/2
dθ cos θ T (μ, θ). (55)

In figure 11 we plot G(μ,w) as a function of μ for several
widths w. It is clear that the value of G(μ,w) may change
by several orders of magnitude, close to μ = 0 by a small
change of μ. Naturally for wider barriers one obtains a smaller
conductance.

8
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Figure 9. The diode heterostructure: two thin slabs of q-regions of width w separated by a k-region of width d , all inside semi-infinite slabs
of k-regions.

Figure 10. Transmission of a diode structure with w = 50a and
d = 100a (top) and d = 200a (bottom).

6.3. A limiting case

The limiting case of a barrier can be represented by a delta
function potential, V (x, y) = gσzδ(x). (See the next section
for a complete discussion of delta function potentials in the
Dirac equation.) It is interesting to compute the reflected flux
for both Schrödinger and Dirac electrons for this potential. In
the first case one obtains

R = (2mg/h̄2)2

4k2
F cos2 θ + (2mg/h̄2)2

, (56)

Figure 11. Linear response conductance G(μ, w), per Dirac cone, as
a function of the chemical potential μ, for different values of the
width w. The hopping matrix t is taken to be t = 2.7 eV and
t ′ = 0.1 eV.

whereas for Dirac electrons the result is

R = tanh2[g/(h̄vF )] . (57)

It is clear that, for electrons in graphene, R is angular and
energy-independent. For the case g � h̄vF the reflection tends
to unity.

7. The diode: a limiting case

Finally we want to discuss a limiting case of the resonant
tunneling diode made of graphene. The device is represented
in figure 9. The corresponding study for Schrödinger electrons
was done by Tsu and Esaki [41].

A limiting situation of the device described in figure 9
is one where the barriers are described by a scalar Lorentz
potential of the form

V (x, y) = lim
ε→0

g
1

2ε
[1 − θ(|x | − ε)]σz

+ lim
ε→0

g
1

2ε
[1 − θ(|x − d| − ε)]σz

= gσz[δ(x)+ δ(x − d)]. (58)

The connection with the true barrier is made by identifying g
with αt ′wa, with α a numerical constant of dimensions the
inverse of length. This form of the potential is equivalent to a
mass term and therefore to a gap in the spectrum. However,
given the short range nature of the potential, its effect comes

9
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only in the boundary conditions imposed on the wavefunction
at the potential position.

The problem of Dirac electrons in delta function potentials
has been studied in the past [42, 43] and is not without
subtleties [44–46]. The subtleties can be traced back to the
problem of evaluating the integral

∫ ε

−ε
f (x)δ(x) dx, (59)

where f (x) is a discontinuous function at x = 0. If we try
to solve the problem of Dirac electrons with a delta function
potential using the same trick [40] one uses for Schrödinger
electrons we face the problem defined by the integral (59). This
is so because the wavefunction of Dirac electrons in a delta
function potential is discontinuous at the point where the delta
function is located. There are several strategies to overcome
this difficulty [42–46]. The most straightforward was devised
by McKellar and Stephenson [42, 43] and generalized by
Dominguez-Adame and Maciá [45]. In short, the Dirac
equation along the x direction can be written as

dφ(x)

dx
= Ĝ(x)φ(x), (60)

where φ(x) is a spinor wavefunction. This problem can be
formally solved as

φ(x) = Tx e
∫ x

x0
Ĝ(x) dx

φ(x0), (61)

where the operator Tx is the position order operator such that

Tx[Ĝ(x)Ĝ(y)] = Ĝ(x)Ĝ(y)θ(x − y)

+ Ĝ(y)Ĝ(x)θ(y − x). (62)

Since we are interested in determining the boundary conditions
obeyed by the wavefunction φ(x) at the delta function position
we consider the infinitesimal interval x ∈ [−ε, ε], obtaining

φ(ε) = Tx e
∫ ε
−ε Ĝ(x) dxφ(−ε). (63)

The integral is dominated by the delta function and for the
problem we are treating in this paper we obtain the following
boundary condition:

φ(ε) = e−i g
vF h̄ σxσzφ(−ε) . (64)

To evaluate how the exponential acts on φ(−ε) we use the
Lagrange–Silvester formula [45] for a function f (M) of a
matrix M :

f (M) = f (λ1)
1λ2 − M

λ2 − λ1
+ f (λ2)

1λ1 − M

λ1 − λ2
, (65)

where λ1,2 are the eigenvalues of M . For the problem at hand,
equation (65) leads to the following boundary condition around
x = 0:(
φa(0+)
φb(0+)

)
= cosh g̃

(
φa(0−)
φb(0−)

)
+ i sinh g̃

(
φb(0−)

−φa(0−)

)
.

(66)

where g̃ = g
vF h̄ is an adimensional interaction constant and

0± represent positive and negative infinitesimals. A similar

Figure 12. Top panels: transmitted flux Tf(E = 0.1, θ) for fixed
g̃ = 2 and two d = 100a, 200a and for fixed d = 100a and three
g̃ = 0.5, 1, 2. Bottom panels: transmitted flux Tf(E, θ = 0) for the
same cases.

boundary condition holds for x = d . For the potential (58)
we can now define three different regions I, II and III, defined
as x < 0, 0 < x < d and x > d , respectively. In each of
these regions the wavefunction is a sum of two plane waves
of opposite momentum along the x direction, with each plane
wave multiplied by the coefficients A� and B�, where � = I,
II and III label the three regions defined above.

Once the matrix T has been computed (see the appendix)
the reflection coefficient is obtained from

r = − T ∗
12

T ∗
11

, (67)

and the transmitted flux Tf from

Tf = 1 − rr∗. (68)

For the case of zero electrostatic potentials, Ui = 0, we obtain

Tf = 1

1 + sinh2 (2g̃) cos2 (2dk)
, (69)

which is a similar expression to the one in (53) if g̃ = αw.
It is simple to identify the limit T → 1, which occurs when
2kd = (2n + 1)π , with n = 0, 1, 2, . . ..

In figure 12 we show the transmitted flux Tf(E, θ) as a
function of the energy and of the angle θ . The barrier between
the leads and the center of the device is represented by a delta
function potential; therefore wider barriers are represented
by larger values of g̃. From figure 12 we can see that, for
larger values of g̃, the transmission in the forward direction
is essentially zero except at some resonant energies, where the
transmission goes to one. As a function of the angle we see that
there are some angles for which the transmission is also one.
When the length of the central part of the device is increased
(larger d) the resonances become closer to each other and more
resonances appear.

In figure 13 we present an intensity plot of Tf(E, θ) for
a device with g̃ = 0.5 and d = 200a. In this figure we

10
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Figure 13. Intensity plot of Tf(E, θ) for a device with g̃ = 0.5 and
d = 200a. There are clearly well-defined regions of large intensity
transmission.

can follow the evolution of the resonances in the E versus θ
plane. The six lines of larger transmission are associated with
the resonances we see in figure 12 for g̃ = 2 and d = 100a.

As before, the linear response conductance per unit
of cross-sectional length is given, at zero temperature, by
equation (55) and represented in figure 14. For small values
of g̃ the conductance shows smooth oscillations whereas for
larger g̃ values strong resonances are observed. The number of
observed resonances depends on the length d .

8. Final remarks

In this paper we discussed the tunneling properties of Dirac
electrons in two dimensions when they traverse regions of
space where the spectrum presents a finite energy gap. In
the case we considered here, the gap is induced by depositing
graphene on top of boron nitride, rendering, in this way,
the sub-lattices A and B non-equivalent. The consequence
is the opening of a gap in the energy spectrum that we
have parameterized by the parameter t ′ = 0.1t . We have
shown that the existence of an energy gap prevents the Klein
paradox from taking place, a necessary condition for building
nanoelectronic devices made of graphene. We have also shown
that basic devices like a resonant tunneling diode can be made
of graphene, by intercalating two regions where the spectrum
of graphene presents a gap. We have also shown that simple
analytical expressions can be derived for the tunneling through
these types of heterostructures. In addition, we have shown
that a limiting case of the resonant tunneling diode can be
understood by using Dirac delta function potentials.

Clearly that one is led to think that a full description of
the ballistic (no impurities) transport process in the system
should also include the effect of temperature and phonons. We
note, however, that the electron–phonon interaction has been
shown to have a small effect in the optical conductivity of
graphene [47]. Which means that phonons should not be very
important in the description of the transport process. Also the
polaronic effect leads to a renormalization of the velocity vF

in the k-region and to the renormalization of the effective mass

Figure 14. Linear response conductance per unit of cross-sectional
length at zero temperature. The top panels show G(μ, d) with
g̃ = 0.5, 1 and the lower panels show the same quantity but for
g̃ = 2, 4.

mv2
F = t ′ in the q-region. But since these two parameters can

be considered as effective ones there is no point in including
the polaronic effect explicitly. Concerning the temperature,
clearly it will be of no importance when the chemical potential
is above the gap. When the energy is in the gap there will
certainly be temperature-activated transport adding on top of
the tunneling current. For small temperatures this will be a
small effect.

We believe our results of relevance for future nanoelec-
tronics applications of graphene.
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Appendix. Details of section 7 results

We now give the details that allow one to derive the result (69).
Applying boundary conditions derived in section 7 and a T -
matrix description [40] for the scattering problem we obtain

(
AIII

BIII

)
= T

(
AI

BI

)
=

(
T11 T12

T ∗
12 T ∗

11

) (
AI

BI

)
(A.1)

with
T = V −1

3 M2V −1
2 M1. (A.2)

The several matrices involved in equation (A.2) are defined as

M1 = cosh g̃

(
1 1

s1eiθ1 −s1e−iθ1

)

+ i sinh g̃

(
s1eiθ1 −s1e−iθ1

−1 −1

)
. (A.3)

V −1
2 = 1

2 cos θ2

(
e−iθ2 s2

eiθ2 −s2

)
, (A.4)
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M2 = cosh g̃

(
eik2d e−ik2d

s2ei(θ2+k2d) −s2e−i(θ2+k2d)

)

+ i sinh g̃

(
s2ei(θ2+k2d) −s2e−i(θ2+k2d)

−eik2d −e−ik2d

)
, (A.5)

and

V −1
3 = 1

2 cos θ3

(
e−i(θ3+k3d) s3e−ik3d

ei(θ3+k3d) −s3eik3d

)
. (A.6)

The momenta k2 and k3 are given by

ki = 1

vF h̄

√
(E − Ui )2 − (E − U1)2 sin2 θ1, (A.7)

with i = 2, 3. The angles θi are defined as

θi = arctan
ky

ki
, (A.8)

with ky = |E − U1| sin θ1/(vF h̄). The si functions are given
by si = sign(E − Ui ), with i = 1, 2, 3. The potential
energies Ui represent some electrostatic potential created in
the corresponding region. Although an analytical expression
for T can be produced by carrying out the four matrix
multiplications, the resulting expression is too cumbersome to
be given here. In the special case that all Ui = 0, the matrix
elements of T have a simple form given by

T11 = cosh2 g̃ + e−2idk sinh2 g̃, (A.9)

and

T12 = −sie−iθ (1 + e−2ikd ) cosh g̃ sinh g̃, (A.10)

with s = sign E , k = |E | cos θ/(vF h̄) and θ the incident angle
in the barrier.
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